Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2019
    In:  The Journal of the Acoustical Society of America Vol. 146, No. 4_Supplement ( 2019-10-01), p. 2755-2756
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 146, No. 4_Supplement ( 2019-10-01), p. 2755-2756
    Abstract: Piezo-acoustic drop-on-demand (DOD) inkjet printing is widely applied in high-end digital printing due to its unprecedented precision and reproducibility. However, the stability of piezo-DOD inkjet printing can sometimes be compromised through the stochastic entrainment of bubbles within the ink channel. The acoustically driven air bubble modifies the ink channel acoustics, and conversely, the modified ink channel acoustics influences the bubble dynamics. Here, we measure the acoustic eigenfrequency of a MEMS based silicon ink channel as a function of the bubble size. The eigenfrequency was measured using a pulse-echo system and the bubble size using a short-wave infrared imaging setup. We show that the measured eigenfrequency increases when an air bubble is entrained. Surprisingly, the ink channel resonance frequency plateaus at total bubble volumes larger than 10 pl. Moreover, it was found that at a constant total bubble volume, the resonance frequency increases with the number of entrained bubbles. We show that both experimental observations can be quantitatively explained from a simple lumped element model (LEM) comprising the ink channel Helmholtz resonator coupled to the bubble mass-spring system. The results of the LEM model were validated using a full numerical model of the coupled ink channel—bubble system.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2019
    detail.hit.zdb_id: 1461063-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages