In:
Science, American Association for the Advancement of Science (AAAS), Vol. 345, No. 6202 ( 2014-09-12), p. 1333-1337
Abstract:
Atom-scale defects in semiconductors are promising building blocks for quantum devices, but our understanding of their material-dependent electronic structure, optical interactions, and dissipation mechanisms is lacking. Using picosecond resonant pulses of light, we study the coherent orbital and spin dynamics of a single nitrogen-vacancy center in diamond over time scales spanning six orders of magnitude. We develop a time-domain quantum tomography technique to precisely map the defect’s excited-state Hamiltonian and exploit the excited-state dynamics to control its ground-state spin with optical pulses alone. These techniques generalize to other optically addressable nanoscale spin systems and serve as powerful tools to characterize and control spin qubits for future applications in quantum technology.
Type of Medium:
Online Resource
ISSN:
0036-8075
,
1095-9203
DOI:
10.1126/science.1255541
Language:
English
Publisher:
American Association for the Advancement of Science (AAAS)
Publication Date:
2014
detail.hit.zdb_id:
128410-1
detail.hit.zdb_id:
2066996-3
detail.hit.zdb_id:
2060783-0
SSG:
11