Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2017
    In:  Science Vol. 358, No. 6368 ( 2017-12-08), p. 1283-1288
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 358, No. 6368 ( 2017-12-08), p. 1283-1288
    Abstract: Introns are removed from eukaryotic messenger RNA precursors by the spliceosome in two transesterification reactions—branching and exon ligation. The mechanism of 3′–splice site recognition during exon ligation has remained unclear. Here we present the 3.7-angstrom cryo–electron microscopy structure of the yeast P-complex spliceosome immediately after exon ligation. The 3′–splice site AG dinucleotide is recognized through non–Watson-Crick pairing with the 5′ splice site and the branch-point adenosine. After the branching reaction, protein factors work together to remodel the spliceosome and stabilize a conformation competent for 3′–splice site docking, thereby promoting exon ligation. The structure accounts for the strict conservation of the GU and AG dinucleotides at the 5′ and 3′ ends of introns and provides insight into the catalytic mechanism of exon ligation.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2017
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages