Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    American Society for Microbiology ; 2019
    In:  Applied and Environmental Microbiology Vol. 85, No. 14 ( 2019-07-15)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 85, No. 14 ( 2019-07-15)
    Kurzfassung: Microbial biomass is a key parameter needed for the quantification of microbial turnover rates and their contribution to the biogeochemical element cycles. However, estimates of microbial biomass rely on empirically derived mass-to-volume relationships, and large discrepancies exist between the available empirical conversion factors. Here we report a significant nonlinear relationship between carbon mass and cell volume ( m carbon = 197 × V 0.46 ; R 2 = 0.95 ) based on direct cell mass, volume, and elemental composition measurements of 12 prokaryotic species with average volumes between 0.011 and 0.705 μm 3 . The carbon mass density of our measured cells ranged from 250 to 1,800 fg of C μm −3 for the measured cell volumes. Compared to other currently used models, our relationship yielded up to 300% higher carbon mass values. A compilation of our and previously published data showed that cells with larger volumes ( 〉 0.5 μm 3 ) display a constant (carbon) mass-to-volume ratio, whereas cells with volumes below 0.5 μm 3 exhibit a nonlinear increase in (carbon) mass density with decreasing volume. Small microorganisms dominate marine and freshwater bacterioplankton as well as soils and marine and terrestrial subsurface. The application of our experimentally determined conversion factors will help to quantify the true contribution of these microorganisms to ecosystem functions and global microbial biomass. IMPORTANCE Microorganisms are a major component of Earth’s biosphere, and their activity significantly affects the biogeochemical cycling of bioavailable elements. To correctly determine the flux of carbon and energy in the environment, reliable estimates of microbial abundances and cellular carbon content are necessary. However, accurate assessments of cellular carbon content and dry weight are not trivial to obtain. Here we report direct measurements of cell dry and carbon mass of environmentally relevant prokaryotic microorganisms using a microfluidic mass sensor. We show a significant nonlinear relationship between carbon mass and cell volume and discuss this relationship in the light of currently used cellular mass models.
    Materialart: Online-Ressource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2019
    ZDB Id: 223011-2
    ZDB Id: 1478346-0
    SSG: 12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz