Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2019
    In:  Applied and Environmental Microbiology Vol. 85, No. 5 ( 2019-03)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 85, No. 5 ( 2019-03)
    Abstract: Near-surface groundwaters are prone to receive (in)organic matter input from their recharge areas and are known to harbor autotrophic microbial communities linked to nitrogen and sulfur metabolism. Here, we use multi-omic profiling to gain holistic insights into the turnover of inorganic nitrogen compounds, carbon fixation processes, and organic matter processing in groundwater. We sampled microbial biomass from two superimposed aquifers via monitoring wells that follow groundwater flow from its recharge area through differences in hydrogeochemical settings and land use. Functional profiling revealed that groundwater microbiomes are mainly driven by nitrogen (nitrification, denitrification, and ammonium oxidation [anammox]) and to a lesser extent sulfur cycling (sulfur oxidation and sulfate reduction), depending on local hydrochemical differences. Surprisingly, the differentiation potential of the groundwater microbiome surpasses that of hydrochemistry for individual monitoring wells. Being dominated by a few phyla ( Bacteroidetes , Proteobacteria , Planctomycetes , and Thaumarchaeota ), the taxonomic profiling of groundwater metagenomes and metatranscriptomes revealed pronounced differences between merely present microbiome members and those actively participating in community gene expression and biogeochemical cycling. Unexpectedly, we observed a constitutive expression of carbohydrate-active enzymes encoded by different microbiome members, along with the groundwater flow path. The turnover of organic carbon apparently complements for lithoautotrophic carbon assimilation pathways mainly used by the groundwater microbiome depending on the availability of oxygen and inorganic electron donors, like ammonium. IMPORTANCE Groundwater is a key resource for drinking water production and irrigation. The interplay between geological setting, hydrochemistry, carbon storage, and groundwater microbiome ecosystem functioning is crucial for our understanding of these important ecosystem services. We targeted the encoded and expressed metabolic potential of groundwater microbiomes along an aquifer transect that diversifies in terms of hydrochemistry and land use. Our results showed that the groundwater microbiome has a higher spatial differentiation potential than does hydrochemistry.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages