Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Infection and Immunity, American Society for Microbiology, Vol. 86, No. 10 ( 2018-10)
    Abstract: Proteus mirabilis is a leading cause of catheter-associated urinary tract infections (CAUTIs) and urolithiasis. The transcriptional regulator MrpJ inversely modulates two critical aspects of P. mirabilis UTI progression: fimbria-mediated attachment and flagellum-mediated motility. Transcriptome data indicated a network of virulence-associated genes under MrpJ's control. Here, we identify the direct gene regulon of MrpJ and its contribution to P. mirabilis pathogenesis, leading to the discovery of novel virulence targets. Ch romatin i mmuno p recipitation followed by high-throughput seq uencing (ChIP-seq) was used for the first time in a CAUTI pathogen to probe for in vivo direct targets of MrpJ. Selected MrpJ-regulated genes were mutated and assessed for their contribution to UTI using a mouse model. ChIP-seq revealed a palindromic MrpJ binding sequence and 78 MrpJ-bound regions, including binding sites upstream of genes involved in motility, fimbriae, and a type VI secretion system (T6SS). A combinatorial mutation approach established the contribution of three fimbriae ( fim8A , fim14A , and pmpA ) to UTI and a new pathogenic role for the T6SS in UTI progression. In conclusion, this study (i) establishes the direct gene regulon and an MrpJ consensus binding site and (ii) led to the discovery of new virulence genes in P. mirabilis UTI, which could be targeted for therapeutic intervention of CAUTI.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 1483247-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages