Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Infection and Immunity, American Society for Microbiology, Vol. 86, No. 4 ( 2018-04)
    Abstract: The yeast Candida parapsilosis is an increasingly common cause of systemic fungal infections among immunocompromised individuals, including premature infants. Adhesion to host surfaces is an important step in pathogenesis, but this process has not been extensively studied in this organism. A microfluidics assay was developed to test the ability of C. parapsilosis to adhere to immobilized host extracellular matrix proteins under physiological fluid shear conditions. Growth in mammalian tissue culture medium at 37°C for 3 to 6 h led to the induction of an adhesive phenotype at shear forces of 1 to 5 dynes/cm 2 in some isolates of C. parapsilosis . Glutamic acid, proline, and calcium appeared to be the minimally necessary requirements for increased adhesion in these assays. To determine whether genes homologous to the ALS gene family of C. albicans were important for the adhesive phenotype, the expression levels of 5 homologous C. parapsilosis genes were quantified by using quantitative PCR (qPCR) under conditions leading to increased adhesion. CPAR2_404800 ( CpALS7 ) and CPAR2_404780 showed increased expression levels compared to those in control yeast. The extent of adhesion was variable among different isolates, and linear regression identified the expression of CpALS7 but not CPAR2_404780 as having a strong positive correlation with adhesion. A homozygous CpALS7 deletion strain was deficient in adhesion, whereas the expression of CpALS7 in Saccharomyces cerevisiae resulted in increased adhesion. Together, these data provide strong evidence that CpAls7 aids in the adherence of C. parapsilosis to the extracellular matrix under shear forces and support its previously reported role in virulence.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 1483247-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages