Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Clinical Microbiology, American Society for Microbiology, Vol. 57, No. 10 ( 2019-10)
    Abstract: Shiga toxin-producing Escherichia coli (STEC) and the STEC subgroup enterohemorrhagic E. coli cause intestinal infections with symptoms ranging from watery diarrhea to hemolytic-uremic syndrome (HUS). A key tool for the epidemiological differentiation of STEC is serotyping. The serotype in combination with the main virulence determinants gives important insight into the virulence potential of a strain. However, a large fraction of STEC strains found in human disease, including strains causing HUS, belongs to less frequently detected STEC serovars or their O/H antigens are unknown or even untypeable. Recent implementation of whole-genome sequence (WGS) analysis, in principle, allows the deduction of serovar and virulence gene information. Therefore, here we compared classical serovar and PCR-based virulence marker detection with WGS-based methods for 232 STEC strains, focusing on less frequently detected STEC serovars and nontypeable strains. We found that the results of WGS-based extraction showed a very high degree of overlap with those of the more classical methods. Specifically, the rate of concordance was 97% for O antigens (OAGs) and 99% for H antigens (HAGs) of typeable strains and 〉 99% for stx 1 , stx 2 , or eaeA for all strains. Ninety-eight percent of nontypeable OAGs and 100% of nontypeable HAGs were defined by WGS analysis. In addition, the novel methods enabled a more complete analysis of strains causing severe clinical symptoms and the description of four novel STEC OAG loci. In conclusion, WGS is a promising tool for gaining serovar and virulence gene information, especially from a public health perspective.
    Type of Medium: Online Resource
    ISSN: 0095-1137 , 1098-660X
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 1498353-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages