Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2005
    In:  Journal of Virology Vol. 79, No. 1 ( 2005-01), p. 547-553
    In: Journal of Virology, American Society for Microbiology, Vol. 79, No. 1 ( 2005-01), p. 547-553
    Abstract: Ebola virus infection causes a highly lethal hemorrhagic fever syndrome associated with profound immunosuppression through its ability to induce widespread inflammation and cellular damage. Though GP, the viral envelope glycoprotein, mediates many of these effects, the molecular events that underlie Ebola virus cytopathicity are poorly understood. Here, we define a cellular mechanism responsible for Ebola virus GP cytotoxicity. GP selectively decreased the expression of cell surface molecules that are essential for cell adhesion and immune function. GP dramatically reduced levels of αVβ3 without affecting the levels of α2β1 or cadherin, leading to cell detachment and death. This effect was inhibited in vitro and in vivo by brefeldin A and was dependent on dynamin, the GTPase. GP also decreased cell surface expression of major histocompatibility complex class I molecules, which alters recognition by immune cells, and this effect was also dependent on the mucin domain previously implicated in GP cytotoxicity. By altering the trafficking of select cellular proteins, Ebola virus GP inflicts cell damage and may facilitate immune escape by the virus.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2005
    detail.hit.zdb_id: 1495529-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages