In:
Molecular and Cellular Biology, Informa UK Limited, Vol. 6, No. 12 ( 1986-12), p. 4268-4273
Abstract:
Gene amplification has been associated with multidrug resistance (MDR) in several drug-resistant Chinese hamster ovary (CHO) cell lines which exhibit cross-resistance to other unrelated, cytotoxic drugs. In situ hybridization studies (Teeter et al., J. Cell Biol., in press) suggested the presence of an amplified gene associated with the MDR phenotype on the long arm of either of the largest CHO chromosomes (1 or Z1) in vincristine-resistant cells. In this study, somatic cell hybrids were constructed between these vincristine-resistant CHO cells and drug-sensitive murine cells to determine the functional relationship between the chromosome bearing the amplified sequences and the MDR phenotype. Hybrids exhibited primary drug resistance and MDR in an incomplete dominant fashion. Hybrid clones and subclones segregated CHO chromosomes. Concordant segregation between vincristine resistance, the MDR phenotype, the presence of the MDR-associated amplified sequences, overexpression of the gene located in those sequences, and CHO chromosome Z1 was consistent with the hypothesis that there is an amplified gene on chromosome Z1 of the vincristine-resistant CHO cells which is responsible for the MDR in these cells. A low level of discordance between CHO chromosomes Z8 and 2 and the drug resistance phenotype suggests that these chromosomes may contain genes involved with the MDR phenotype.
Type of Medium:
Online Resource
ISSN:
0270-7306
,
1098-5549
DOI:
10.1128/MCB.6.12.4268
Language:
English
Publisher:
Informa UK Limited
Publication Date:
1986
detail.hit.zdb_id:
1474919-1
SSG:
12