Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  The European Physical Journal C Vol. 81, No. 2 ( 2021-02)
    In: The European Physical Journal C, Springer Science and Business Media LLC, Vol. 81, No. 2 ( 2021-02)
    Abstract: In High Energy Physics experiments Particle Flow (PFlow) algorithms are designed to provide an optimal reconstruction of the nature and kinematic properties of the particles produced within the detector acceptance during collisions. At the heart of PFlow algorithms is the ability to distinguish the calorimeter energy deposits of neutral particles from those of charged particles, using the complementary measurements of charged particle tracking devices, to provide a superior measurement of the particle content and kinematics. In this paper, a computer vision approach to this fundamental aspect of PFlow algorithms, based on calorimeter images, is proposed. A comparative study of the state of the art deep learning techniques is performed. A significantly improved reconstruction of the neutral particle calorimeter energy deposits is obtained in a context of large overlaps with the deposits from charged particles. Calorimeter images with augmented finer granularity are also obtained using super-resolution techniques.
    Type of Medium: Online Resource
    ISSN: 1434-6044 , 1434-6052
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1397769-6
    detail.hit.zdb_id: 1459069-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages