Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    World Scientific Pub Co Pte Ltd ; 2009
    In:  International Journal of Modern Physics C Vol. 20, No. 05 ( 2009-05), p. 721-733
    In: International Journal of Modern Physics C, World Scientific Pub Co Pte Ltd, Vol. 20, No. 05 ( 2009-05), p. 721-733
    Abstract: We compare the Lattice BGK, the Multiple Relaxation Times and the Entropic Lattice Boltzmann Methods for time harmonic flows. We measure the stability, speed and accuracy of the three models for Reynolds and Womersley numbers that are representative for human arteries. The Lattice BGK shows predictable stability and is the fastest method in terms of lattice node updates per second. The Multiple Relaxation Times LBM shows erratic stability which depends strongly on the relaxation times set chosen and is slightly slower. The Entropic LBM gives the best stability at the price of fewer lattice node updates per second. A parameter constraint optimization technique is used to determine which is the fastest model given a certain preset accuracy. It is found that the Lattice BGK performs best at most arterial flows, except for the high Reynolds number flow in the aorta, where the Entropic LBM is the fastest method due to its better stability. However we also conclude that the Entropic LBM with velocity/pressure inlet/outlet conditions shows much worse performance.
    Type of Medium: Online Resource
    ISSN: 0129-1831 , 1793-6586
    RVK:
    Language: English
    Publisher: World Scientific Pub Co Pte Ltd
    Publication Date: 2009
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages