Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Wegen Wartungsarbeiten steht das KOBV-Portal am 11.03.2025 ggf. nur eingeschränkt zur Verfügung. Wir bitten um Ihr Verständnis.
Export
  • 1
    Online Resource
    Online Resource
    World Scientific Pub Co Pte Ltd ; 2014
    In:  International Journal of Structural Stability and Dynamics Vol. 14, No. 05 ( 2014-06), p. 1440002-
    In: International Journal of Structural Stability and Dynamics, World Scientific Pub Co Pte Ltd, Vol. 14, No. 05 ( 2014-06), p. 1440002-
    Abstract: This paper performs degradation assessment and safety evaluation of a concrete gravity dam at Shenwo reservoir in Liaoning province of China by using two methods, i.e. deterministic method and probabilistic method, respectively. The deterministic responses of representative sluice piers are computed through static pushover and dynamic analyses. The probabilistic uncertainty analysis, including time invariant and time variant reliability analyses, is based on finite element (FE) reliability theory. For time invariant case, the material and loading parameters are considered as random variables, including elastic modulus, Poisson's ratio, mass density and pushover forces. For time variant case, the earthquake history is simulated by using random process, and the first-order reliability method (FORM) approximation combined with Koo's analytical solution is used to compute the mean upcrossing rate for given performance functions, through which the failure probabilities are calculated. Based on the analysis results using these two methods, the safety and reliability of the dam is assessed. Furthermore, the performance assessments of the dam in its current state are compared with those in the original state (i.e. when the dam was built) to quantify its performance degradation. Finally, the assessment results of using the deterministic and probabilistic methods are compared, and the discrepancies between them are quantified and explained. The computation is based on a general FE analysis platform for earthquake engineering simulation, OpenSees.
    Type of Medium: Online Resource
    ISSN: 0219-4554 , 1793-6764
    Language: English
    Publisher: World Scientific Pub Co Pte Ltd
    Publication Date: 2014
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages