In:
Journal of Mechanics in Medicine and Biology, World Scientific Pub Co Pte Ltd, Vol. 21, No. 05 ( 2021-06), p. 2140008-
Abstract:
In magnetoacoustic tomography with magnetic induction and magnetically mediated thermoacoustic imaging, tissues are exposed to an alternating field, generating magnetoacoustic and thermoacoustic effects in the tissues. This study aimed to investigate the relationship between magnetoacoustic and thermoacoustic effects in a low-conductivity object put in a Gauss-pulsed alternating magnetic field. First, the derivations of the magnetic flux density and electric field strength induced by a Gauss-pulsed current flowing through the coil based on the theory of electromagnetic field were examined. Second, the analytical solution of the magnetic field was studied by simulation. To validate the accuracy of the analytical solution, the analytical solution and the numerical simulation of the magnetic flux density were compared. It shows that the analytical solution coincides with the numerical simulation well. Then, based on the theoretical analysis of the acoustic source generation, numerical studies were conducted to simulate pressures excited by magnetoacoustic and thermoacoustic effects in low-conductivity objects similar to tissues in the Gauss-pulsed magnetic field. The thermoacoustic effect played a leading role in low-conductivity objects placed in the Gauss-pulsed magnetic field, and the magnetoacoustic effect could be ignored. This study provided the theoretical basis for further research on magnetoacoustic tomography with magnetic induction and magnetically mediated thermoacoustic imaging for pathological tissues.
Type of Medium:
Online Resource
ISSN:
0219-5194
,
1793-6810
DOI:
10.1142/S021951942140008X
Language:
English
Publisher:
World Scientific Pub Co Pte Ltd
Publication Date:
2021