Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    World Scientific Pub Co Pte Ltd ; 2018
    In:  Journal of Theoretical and Computational Chemistry Vol. 17, No. 03 ( 2018-05), p. 1840006-
    In: Journal of Theoretical and Computational Chemistry, World Scientific Pub Co Pte Ltd, Vol. 17, No. 03 ( 2018-05), p. 1840006-
    Kurzfassung: Biological environments are often “crowded” due to high concentrations (300–400[Formula: see text]g/L) of macromolecules. Computational modeling approaches like Molecular Dynamics (MD), rigid-body Brownian Dynamics and Monte Carlo simulations have recently emerged, which allow to study the effects macromolecular crowding at a microscopic level and to provide complementary information to experiments. Here, we use a recently introduced multiple-conformation Monte Carlo (mcMC) approach in order to study the influence of intermolecular interactions on the structural equilibrium of flexible polyethylene glycol (PEG) polymers under self-crowding conditions. The large conformational space accessible to PEG polymers allows us to evaluate the general applicability of the mcMC approach, which describes the intramolecular degrees of freedom by a finite-size ensemble of discrete conformations. Despite the simplicity of the approach, we show that influences of intermolecular interactions on the intramolecular free energy surface can be described qualitatively using mcMC. By varying the magnitude of distinct terms in the intermolecular potential, we can further study the compensating effects of repulsive and nonspecific attractive intermolecular interactions, which favor compact and extended polymer states, respectively. We use our simulation results to derive an analytical model that describes the effects of intermolecular interactions on the stability of PEG polymer conformations as a function of the radius of gyration and the corresponding solvent accessible surface. We use this model to confirm the role of molecular surfaces for attractive interactions that can counteract excluded volume effects. Extrapolation of the model further allows for the analysis of scenarios that are not easily accessible to direct simulations as described here.
    Materialart: Online-Ressource
    ISSN: 0219-6336 , 1793-6888
    Sprache: Englisch
    Verlag: World Scientific Pub Co Pte Ltd
    Publikationsdatum: 2018
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz