Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: ECS Meeting Abstracts, The Electrochemical Society, Vol. MA2023-01, No. 2 ( 2023-08-28), p. 645-645
    Abstract: Organofluorophosphates (OFPs) are one of the major concerns regarding the safety of Lithium Ion Batteries (LIBs) due to their neurotoxic properties. The formation through the hydrolysis of the conducting salt LiPF 6 and subsequent reactions (reductive/oxidative) with the cyclic and linear carbonates is a major drawback in terms of commercial application of LIBs. The additive Lithium Difluorophosphate, which is literature known and beneficial for high-voltage LIBs due to its transition metal (TM) capturing abilities, accelerates the formation of toxic OFPs even further as it also is a hydrolysis product of LiPF 6 . The suppression of the formation of toxic OFPs through a synergetic dual additive approach with fluoroethylene carbonate (FEC) is presented in this study. Here, the thermal- and electrochemical formation of OFPs are successfully inhibited with the addition of 2 wt.% of FEC to the electrolyte containing LiDFP (1 wt.%). Characterization of OFPs is conducted via high performance liquid chromatography mass spectrometry and the toxicological capabilities of the aged electrolyte is assed through an inhibition-evaluation of Acetylcholinesterase lyophilizate. Combined, these two methods illustrate the successful inhibition of OFP formation in FEC/LiDFP dual-additive electrolytes. Further, this dual-additive approach does not deteriorate the performance of LiDFP as single additive making the FEC/LiDFP additive combination a possible new benchmark for high-voltage LIBs.
    Type of Medium: Online Resource
    ISSN: 2151-2043
    Language: Unknown
    Publisher: The Electrochemical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2438749-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages