In:
American Journal of Physiology-Cell Physiology, American Physiological Society, Vol. 320, No. 2 ( 2021-02-01), p. C225-C239
Abstract:
There is growing evidence that microRNAs (miRNAs) are implicated in cellular adaptation to osmotic stress, but the underlying osmosignaling pathways are still not completely understood. In this study, we found that a passenger strand miRNA, miR-23a-5p, was significantly downregulated in response to high NaCl treatment in mouse inner medullary collecting duct cells (mIMCD3) through an miRNA profiling assay. The decrease of miR-23a-5p is hypertonicity-dependent and osmotolerant cell type-specific. Knockdown of miR-23a-5p increased cellular survival and proliferation in mIMCD3. In contrast, miR-23a-5p overexpression repressed cell viability and proliferation under hypertonic stress. RNA deep-sequencing revealed that a heat shock protein 70 (HSP70) isoform, HSP70 member 1B (HSPA1B), was significantly increased under hypertonic treatment. Based on the prediction analysis by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and TargetScan, and a further validation via a dual-luciferase assay, HSPA1B was identified as a potential target of miR-23a-5p. Overexpressed miR-23a-5p suppressed HSPA1B, whereas downregulated miR-23a-5p promoted HSPA1B expression in mIMCD3. In addition, an in vivo study demonstrated that there is a reverse correlation between the levels of miR-23a-5p and HSPA1B in mouse renal inner medulla (papilla) that is exposed to extremely high osmolality. In summary, this study elucidates that passenger strand miR-23a-5p is a novel tonicity-responsive miRNA. The downregulation of miR-23a-5p facilitates cellular adaptation to hypertonic stress in mammalian renal cells through modulating HSPA1B.
Type of Medium:
Online Resource
ISSN:
0363-6143
,
1522-1563
DOI:
10.1152/ajpcell.00441.2020
Language:
English
Publisher:
American Physiological Society
Publication Date:
2021
detail.hit.zdb_id:
1477334-X
SSG:
12