Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 1997
    In:  American Journal of Physiology-Heart and Circulatory Physiology Vol. 272, No. 3 ( 1997-03-01), p. H1382-H1390
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 272, No. 3 ( 1997-03-01), p. H1382-H1390
    Abstract: Exercise training improves functional class in patients with chronic heart failure (CHF) via effects on the periphery with no previously documented effect on intrinsic left ventricular (LV) properties. However, because methods used to evaluate in vivo LV function are limited, it is possible that some effects of exercise training on the failing heart have thus far eluded detection. Twelve dogs were instrumented for cardiac pacing and hemodynamic recordings. Hearts were paced rapidly for 4 wk. Six of the dogs received daily treadmill exercise (CHF(EX), 4.4 km/h, 2 h/day) concurrent with rapid pacing, while the other dogs remained sedentary (CHFs). Hemodynamic measurements taken in vivo at the end of 4 wk revealed relative preservation of maximum rate of pressure rise (2,540 +/- 440 vs. 1,720 +/- 300 mmHg/s, P 〈 0.05) and LV end-diastolic pressure (9 +/- 5 vs. 19 +/- 4 mmHg, P 〈 0.05) in CHF(EX) compared with CHFs. The hearts were then isolated and cross perfused for in vitro measurement of isovolumic pressure-volume relations; these results were compared with those of six normal dogs (N). Systolic function was similarly depressed in both groups of pacing animals [end-systolic elastance (Ees) values of 1.66 +/- 0.47 in CHFs, 1.77 +/- 0.38 in CHF(EX), and 3.05 +/- 0.81 mmHg/ml in N, with no changes in volume axis interceptors of the end-systolic pressure-volume relationship]. The diastolic myocardial stiffness constant, k, was elevated in CHFs and was normalized by exercise training (32 +/- 3 in CHFs, 21 +/- 3 in CHF(EX), 20 +/- 4 in N). Thus daily exercise training preserved in vivo hemodynamics during 4 wk of rapid cardiac pacing and was accompanied by a significant change in diastolic myocardial stiffness in vitro. These findings suggest that changes in heart function may contribute to the overall beneficial hemodynamic effects of exercise training in CHF by a significant effect on diastolic properties.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 1997
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages