Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2014
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 306, No. 7 ( 2014-04-01), p. L645-L660
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 306, No. 7 ( 2014-04-01), p. L645-L660
    Abstract: Tracheobronchial submucosal glands (SMGs) are derived from one or more multipotent glandular stem cells that coalesce to form a placode in surface airway epithelium (SAE). Wnt/β-catenin-dependent induction of lymphoid enhancer factor ( Lef-1) gene expression during placode formation is an early event required for SMG morphogenesis. We discovered that Sox2 expression is repressed as Lef-1 is induced within airway SMG placodes. Deletion of Lef-1 did not activate Sox2 expression in SMG placodes, demonstrating that Lef-1 activation does not directly inhibit Sox2 expression. Repression of Sox2 protein in SMG placodes occurred posttranscriptionally, since the activity of its endogenous promoter remained unchanged in SMG placodes. Thus we hypothesized that Sox2 transcriptionally represses Lef-1 expression in the SAE and that suppression of Sox2 in SMG placodes activates Wnt/β-catenin-dependent induction of Lef-1 during SMG morphogenesis. Consistent with this hypothesis, transcriptional reporter assays, ChIP analyses, and DNA-protein binding studies revealed a functional Sox2 DNA binding site in the Lef-1 promoter that is required for suppressing β-catenin-dependent transcription. In polarized primary airway epithelium, Wnt induction enhanced Lef-1 expression while also inhibiting Sox2 expression. Conditional deletion of Sox2 also enhanced Lef-1 expression in polarized primary airway epithelium, but this induction was significantly augmented by Wnt stimulation. Our findings provide the first evidence that Sox2 acts as a repressor to directly modulate Wnt-responsive transcription of the Lef-1 gene promoter. These studies support a model whereby Wnt signals and Sox2 dynamically regulate the expression of Lef-1 in airway epithelia and potentially also during SMG development.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2014
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages