Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 291, No. 4 ( 2006-10), p. L580-L587
    Abstract: Neutrophils are considered to play a central role in ventilator-induced lung injury (VILI). However, the pulmonary consequences of neutrophil accumulation have not been fully elucidated. Matrix metalloproteinase-9 (MMP-9) had been postulated to participate in neutrophil transmigration. The purpose of this study was to investigate the role of MMP-9 in the neutrophilic inflammation of VILI. Male Sprague-Dawley rats were divided into three groups: 1) low tidal volume (LVT), 7 ml/kg of tidal volume (V T ); 2) high tidal volume (HVT), 30 ml/kg of V T ; and 3) HVT with MMP inhibitor (HVT+MMPI). As a MMPI, CMT-3 was administered daily from 3 days before mechanical ventilation. Degree of VILI was assessed by wet-to-dry weight ratio and acute lung injury (ALI) scores. Neutrophilic inflammation was determined from the neutrophil count in the lung tissue and myeloperoxidase (MPO) activity in the bronchoalveolar lavage fluid (BALF). MMP-9 expression and activity were examined by immunohistochemical staining and gelatinase zymography, respectively. The wet-to-dry weight ratio, ALI score, neutrophil infiltration, and MPO activity were increased significantly in the HVT group. However, in the HVT+MMPI group, pretreatment with MMPI decreased significantly the degree of VILI, as well as neutrophil infiltration and MPO activity. These changes correlated significantly with MMP-9 immunoreactivity and MMP-9 activity. Most outcomes were significantly worse in the HVT+MMPI group compared with the LVT group. In conclusion, VILI mediated by neutrophilic inflammation is closely related to MMP-9 expression and activity. The inhibition of MMP-9 protects against the development of VILI through the downregulation of neutrophil-mediated inflammation.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2006
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages