Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2007
    In:  Journal of Applied Physiology Vol. 102, No. 3 ( 2007-03), p. 1281-1288
    In: Journal of Applied Physiology, American Physiological Society, Vol. 102, No. 3 ( 2007-03), p. 1281-1288
    Abstract: The pulmonary vascular tree undergoes remarkable postnatal development and remodeling. While a number of studies have characterized longitudinal changes in vascular function with growth, none have explored regional patterns of vascular remodeling. We therefore studied six neonatal pigs to see how regional blood flow changes with growth. We selected pigs because of their rapid growth and their similarities to human development with respect to the pulmonary vascular tree. Fluorescent microspheres of varying colors were injected into the pulmonary circulation to mark regional blood on days 3, 12, 27, 43, and 71 after birth. The animals were awake and in the prone posture for all injections. The lungs were subsequently removed, air dried, and sectioned into ∼2-cm 3 pieces. Flow on each injection day was determined for each piece. Despite the increase in the hydrostatic gradient in the lung with growth, there was a strong correlation between blood flow to the same lung piece when compared on days 3 and 71 (0.73 ± 0.12). Although a dorsal-ventral gradient of perfusion did not exist on day 3, blood flow increased more in the dorsal region by day 12 and then gradually became more uniform by day 71. Although most of the lung pieces did not show any discernable pattern of blood flow redistribution, there were spatial patterns of blood flow redistribution that were similar across animals. Our findings suggest that local mechanisms, shared across animals, guide regional changes in vascular resistance or vasoregulation during postnatal development. In the pig, these mechanisms act to produce more uniform flow in the normal posture for an ambulating quadruped. The stimuli for these changes have not yet been identified.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2007
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages