Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2021
    In:  Journal of Applied Physiology Vol. 130, No. 5 ( 2021-05-01), p. 1337-1344
    In: Journal of Applied Physiology, American Physiological Society, Vol. 130, No. 5 ( 2021-05-01), p. 1337-1344
    Abstract: Airway management is important in trauma and critically ill patients. Prolonged mechanical ventilation results in overventilation-induced lung barotrauma, but few studies have examined the consequence of acute (1 h or less) overventilation. We hypothesized that acute hyperventilation, as might inadvertently be performed in prehospital settings, would elevate systemic inflammation and cause lung damage. Female Yorkshire pigs (40–50 kg, n = 10/group) were anesthetized, instrumented for hemodynamic measurements and blood sampling, and underwent a 25% controlled hemorrhage followed by 1 h of 1) spontaneous breathing, 2) “normal” bag ventilation (4.8 L·min volume, ∼400 mL tidal volume, 12 breaths/minute), 3) bag hyperventilation (9 L·min volume, ∼750 mL tidal volume, 12 breaths/minute), 4) maximum hyperventilation (15 L·min volume, ∼750 mL tidal volume, 20 breaths/minute), or 5) mechanical ventilation. Pigs then regained consciousness and recovered for 24 h, followed by euthanasia and collection of blood and tissue samples. No level of manual ventilation had any significant impact on hemodynamic variables. Blood markers of tissue damage and plasma cytokines were not statistically different between groups with the exception of a transient increase in IL-1β; all values returned to baseline by 24 h. On pathological review, severity and distribution of lung edema or other gross pathologies were not significantly different between groups. These data indicate hyperventilation causes no adverse effects, to include inflammation and tissue damage, and that acute overventilation, as could be seen in the prehospital phase of trauma care, does not produce evidence of adverse effects on the lungs following moderate hemorrhage. NEW & NOTEWORTHY Appropriate airway management is essential in trauma and critically ill patients. Prolonged mechanical ventilation can result in overventilation-induced lung barotrauma, but few studies have examined the consequence of acute overventilation. We investigated the outcome of hemorrhage followed by 1 h of overventilation in swine. We found that acute overventilation, as could be seen in the prehospital phase of trauma care, does not produce evidence of adverse effects on otherwise healthy lungs following moderate hemorrhage.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2021
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages