Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Physiological Genomics, American Physiological Society, Vol. 45, No. 12 ( 2013-06-15), p. 449-461
    Abstract: Right ventricular failure (RVF) is the most frequent cause of death in patients with pulmonary arterial hypertension (PAH); however, specific therapies targeted to treat RVF have not been developed. Chronic treatment with carvedilol has been shown to reduce established maladaptive right ventricle (RV) hypertrophy and to improve RV function in experimental PAH. However, the mechanisms by which carvedilol improves RVF are unknown. We have previously demonstrated by microarray analysis that RVF is characterized by a distinct gene expression profile when compared with functional, compensatory hypertrophy. We next sought to identify the effects of carvedilol on gene expression on a genome-wide basis. PAH and RVF were induced in male Sprague-Dawley rats by the combination of VEGF-receptor blockade and chronic hypoxia. After RVF was established, rats were treated with carvedilol or vehicle for 4 wk. RNA was isolated from RV tissue and hybridized for microarray analysis. An initial prediction analysis of carvedilol-treated RVs showed that the gene expression profile resembled the RVF prediction set. However, a more extensive analysis revealed a small group of genes differentially expressed after carvedilol treatment. Further analysis categorized these genes in pathways involved in cardiac hypertrophy, mitochondrial dysfunction, and protein ubiquitination. Genes encoding proteins in the cardiac hypertrophy and protein ubiquitination pathways were downregulated in the RV by carvedilol, while genes encoding proteins in the mitochondrial dysfunction pathway were upregulated by carvedilol. These gene expression changes may explain some of the mechanisms that underlie the functional improvement of the RV after carvedilol treatment.
    Type of Medium: Online Resource
    ISSN: 1094-8341 , 1531-2267
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2013
    detail.hit.zdb_id: 2031330-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages