Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Hindawi Limited ; 2014
    In:  Disease Markers Vol. 2014 ( 2014), p. 1-9
    In: Disease Markers, Hindawi Limited, Vol. 2014 ( 2014), p. 1-9
    Abstract: Changes of glycosylation pattern in serum proteins have been linked to various diseases including cancer, suggesting possible development of novel biomarkers based on the glycomic analysis. In this study, N-linked glycans from human serum were quantitatively profiled by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and compared between healthy controls and ovarian cancer patients. A training set consisting of 40 healthy controls and 40 ovarian cancer cases demonstrated an inverse correlation between P value of ANOVA and area under the curve (AUC) of each candidate biomarker peak from MALDI-TOF MS, providing standards for the classification. A multibiomarker panel composed of 15 MALDI-TOF MS peaks resulted in AUC of 0.89, 80~90% sensitivity, and 70~83% specificity in the training set. The performance of the biomarker panel was validated in a separate blind test set composed of 23 healthy controls and 37 ovarian cancer patients, leading to 81~84% sensitivity and 83% specificity with cut-off values determined by the training set. Sensitivity of CA-125, the most widely used ovarian cancer marker, was 74% in the training set and 78% in the test set, respectively. These results indicate that MALDI-TOF MS-mediated serum N-glycan analysis could provide critical information for the screening of ovarian cancer.
    Type of Medium: Online Resource
    ISSN: 0278-0240 , 1875-8630
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2014
    detail.hit.zdb_id: 2033253-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages