Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Hindawi Limited ; 2019
    In:  Mathematical Problems in Engineering Vol. 2019 ( 2019-04-22), p. 1-16
    In: Mathematical Problems in Engineering, Hindawi Limited, Vol. 2019 ( 2019-04-22), p. 1-16
    Kurzfassung: This paper proposes an evolutionary computing based automatic partitioned clustering of probability density function, the so-called binary adaptive elitist differential evolution for clustering of probability density functions (baeDE-CDFs). Herein, the k -medoids based representative probability density functions (PDFs) are preferred to the k -means one for their capability of avoiding outlier effectively. Moreover, addressing clustering problem in favor of an evolutionary optimization one permits determining number of clusters “on the run”. Notably, the application of adaptive elitist differential evolution (aeDE) algorithm with binary chromosome representation not only decreases the computational burden remarkably, but also increases the quality of solution significantly. Multiple numerical examples are designed and examined to verify the proposed algorithm’s performance, and the numerical results are evaluated using numerous criteria to give a comprehensive conclusion. After some comparisons with other algorithms in the literature, it is worth noticing that the proposed algorithm reveals an outstanding performance in both quality of solution and computational time in a statistically significant way.
    Materialart: Online-Ressource
    ISSN: 1024-123X , 1563-5147
    Sprache: Englisch
    Verlag: Hindawi Limited
    Publikationsdatum: 2019
    ZDB Id: 2014442-8
    SSG: 11
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz