Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Hindawi Limited ; 2020
    In:  Complexity Vol. 2020 ( 2020-02-11), p. 1-26
    In: Complexity, Hindawi Limited, Vol. 2020 ( 2020-02-11), p. 1-26
    Abstract: As the actuator faults in an industrial process cause damage or performance deterioration, the design issue of an optimal controller against these failures is of great importance. In this paper, a fractional-order predictive functional control method based on population extremal optimization is proposed to maintain the control performance against partial actuator failures. The proposed control strategy consists of two key ideas. The first one is the application of fractional-order calculus into the cost function of predictive functional control. Since the knowledge of analytical parameters including the prediction horizon, fractional-order parameter, and smoothing factor in fractional-order predictive functional control is not known, population extremal optimization is employed as the second key technique to search for these parameters. The effectiveness of the proposed controller is examined on two industrial processes, e.g., injection modeling batch process and process flow of coke furnace under constant faults, time-varying faults, and nonrepetitive unknown disturbance. The comprehensive simulation results demonstrate the performance of the proposed control method by comparing with a recently developed predictive functional control, genetic algorithm, and particle swarm optimization-based versions in terms of four performance indices.
    Type of Medium: Online Resource
    ISSN: 1076-2787 , 1099-0526
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2020
    detail.hit.zdb_id: 2004607-8
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages