Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Hindawi Limited ; 2020
    In:  Mathematical Problems in Engineering Vol. 2020 ( 2020-03-17), p. 1-18
    In: Mathematical Problems in Engineering, Hindawi Limited, Vol. 2020 ( 2020-03-17), p. 1-18
    Kurzfassung: Car following is the most common phenomenon in single-lane traffic. The accuracy of acceleration prediction can be effectively improved by the driver’s memory in car-following behaviour. In addition, the Apollo autonomous driving platform launched by Baidu Inc. provides fast test vehicle following vehicle models. Therefore, this paper proposes a car-following model (CFDT) with driver time memory based on real-world traffic data. The CFDT model is firstly constructed by embedded gantry control unit storage capacity (GRU assisted) network. Secondly, the NGSIM dataset will be used to obtain the tracking data of small vehicles with similar driving behaviours from the common real road vehicle driving tracks for data preprocessing according to the response time of drivers. Then, the model is calibrated to obtain the driver’s driving memory and the optimal parameters of the model and structure. Finally, the Apollo simulation platform with high-speed automatic driving technology is used for 3D visualization interface verification. Comparative experiments on vehicle tracking characteristics show that the CFDT model is effective and robust, which improves the simulation accuracy. Meanwhile, the model is tested and validated using the Apollo simulation platform to ensure accuracy and utility of the model.
    Materialart: Online-Ressource
    ISSN: 1024-123X , 1563-5147
    Sprache: Englisch
    Verlag: Hindawi Limited
    Publikationsdatum: 2020
    ZDB Id: 2014442-8
    SSG: 11
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz