Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Evidence-Based Complementary and Alternative Medicine, Hindawi Limited, Vol. 2020 ( 2020-07-09), p. 1-15
    Abstract: Pericarpium zanthoxyli has been extensively used in traditional Oriental medicine to treat gastric disorders and has anti-inflammatory and antioxidative activities. Therefore, the present study examined a possible hepatoprotective effect of a P. zanthoxyli extract (PZE) and investigated the underlying molecular mechanisms. We employed an in vitro model of arachidonic acid (AA) + iron-induced hepatocyte damage and an in vivo model of CCl 4 -induced liver injury to assess the effects of PZE and evaluated the relevant molecular targets using biochemical assays, flow cytometry analysis, Western blot, and histopathological analysis. The PZE inhibited AA + iron-induced hepatotoxicity in HepG2 cells, improved mitochondrial dysfunction, and reversed an increase in the cellular H 2 O 2 production and a decrease in the reduced GSH levels induced by AA + iron. Treatment with either 30 or 100  μ g/ml PZE significantly increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) protein, and the latter dose also increased the antioxidant response element- (ARE-) driven luciferase activity and enhanced the protein expressions of glutamate-cysteine ligase catalytic subunit and NAD(P)H:quinone oxidoreductase 1. In addition, treatment with 100  μ g/ml PZE for 3 or 6 h increased the phosphorylation rates of Nrf2 and the extracellular signal-regulated kinase. In the in vivo experiment, oral treatment with both 100 and 300 mg/kg PZE inhibited the plasma aspartate aminotransferase activity, and the latter also inhibited the plasma alanine aminotransferase activity. In addition, both doses of PZE ameliorated the parenchymal degeneration and necrosis in the liver induced by CCl 4 administration, which was associated with reduced expressions of cleaved caspase-3, cleaved poly (ADP-ribose) polymerase, nitrotyrosine, and 4-hydroxynonenal by PZE. These findings suggest that PZE has protective effects against hepatotoxicity both in vitro and in vivo , which are mainly mediated via its antioxidant activity.
    Type of Medium: Online Resource
    ISSN: 1741-427X , 1741-4288
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2020
    detail.hit.zdb_id: 2148302-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages