Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Hindawi Limited ; 2021
    In:  Journal of Analytical Methods in Chemistry Vol. 2021 ( 2021-3-9), p. 1-10
    In: Journal of Analytical Methods in Chemistry, Hindawi Limited, Vol. 2021 ( 2021-3-9), p. 1-10
    Abstract: In this work, an effective nanocomposite-based adsorbent directed to adsorb cobalt (Co2+) ion was successfully synthesized from graphene oxide (GO), polyvinyl alcohol (PVA), and magnetite (Fe3O4) nanoparticles via a coprecipitation technique. The synthesized GO/PVA/Fe3O4 nanocomposite was applied for Co2+ ion removal with the optimized working conditions including 100 min of contact time, 0.01 g of adsorbent dosage, pH of 5.2, and 50°C of temperature. The investigation of adsorption kinetics showed that the adsorption of Co2+ ion onto the GO/PVA/Fe3O4 nanocomposite followed the pseudo-second-order kinetic model with the rate constant k2 being 0.0026 (g mg−1·min−1). The Langmuir model is suitable to describe the adsorption of Co2+ ion onto the GO/PVA/Fe3O4 nanocomposite with the maximum sorption capacity (qmax) reaching 373.37 mg·g−1. The obtained results also indicated that the GO/PVA/Fe3O4 nanocomposite can adsorb/regenerate for at least 5 cycles with a little reduction in removal efficiency. Therefore, we believe that the GO/PVA/Fe3O4 nanocomposite could be used as a potential adsorbent for heavy metal treatment in terms of high adsorption capacity, fast adsorption rate, and recyclability.
    Type of Medium: Online Resource
    ISSN: 2090-8873 , 2090-8865
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2654178-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages