Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Mathematical Problems in Engineering, Hindawi Limited, Vol. 2021 ( 2021-3-18), p. 1-13
    Kurzfassung: Many occupational injuries occur in the manufacturing industry due to hazardous events. The available studies and statistics on occupational safety in the Kingdom of Saudi Arabia demonstrate the need for improving the work environment by introducing effective techniques for analyzing and assessing safety risks to control the most hazardous events. This study aims to develop a general model for assessing safety risks by integrating Monte Carlo simulation (MCS) and fuzzy set theory (FST) to overcome the uncertainty and unavailability of data on the severity and likelihood of hazards. MCS uses the ModelRisk software for modeling hazards that exhibit randomness and uncertainty and have historical data. In contrast, FST uses a Matlab code to assess expert judgment about hazards featuring epistemic uncertainty or unavailable historical data. The Al-Babtain Pole Factory in Riyadh was selected as a case study in the manufacturing environment to prove the applicability and effectiveness of the developed model. From the 371 hazards identified using the Occupational Health and Safety Assessment Series 18001, only five were analyzed using the two model techniques. The likelihood and severity of these five hazards were collected and analyzed to obtain the risk levels. A list of hazards and their processing priorities were then produced. According to the risk values calculated using both techniques, Hazard5 was found to be the most hazardous event, followed by Hazard1. The results of the proposed model demonstrated the distributions, statistics, percentiles, and risk limits for the selected hazards. These outputs support decision-making and increase the effectiveness and flexibility of safety risk assessments, which means that the proposed model is reliable and applicable for SRA under uncertainty and data unavailability in the manufacturing industry.
    Materialart: Online-Ressource
    ISSN: 1563-5147 , 1024-123X
    Sprache: Englisch
    Verlag: Hindawi Limited
    Publikationsdatum: 2021
    ZDB Id: 2014442-8
    SSG: 11
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz