Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Hindawi Limited ; 2022
    In:  Journal of Sensors Vol. 2022 ( 2022-7-23), p. 1-8
    In: Journal of Sensors, Hindawi Limited, Vol. 2022 ( 2022-7-23), p. 1-8
    Kurzfassung: In order to improve the communication efficiency of the CAN bus application layer communication protocol of the inverter network monitoring system, this paper proposes a TTCAN scheduling optimization algorithm for the robot inverter remote monitoring system based on PLC and cloud platform. According to the analysis of the communication requirements of the frequency converter monitoring system, this paper designs the application layer protocol of the nodes in the system and establishes the system scheduling matrix. The time triggered can bus protocol (TTCAN) combines the event triggered mechanism with the time triggered mechanism. The hybrid scheduling strategy is used to optimize the system matrix of TTCAN; that is, the hybrid particle swarm optimization algorithm is used for periodic messages. For nonperiodic messages, uniform scheduling strategy and dynamic scheduling algorithm are adopted. The simulation is carried out by MATLAB tools. The simulation results show that the sum of partial minimum transmission time is 1928 and there are multiple optimal individuals through the hybrid particle swarm optimization algorithm. Compared with the traditional genetic algorithm and single particle swarm optimization algorithm, the hybrid algorithm is better than the traditional genetic algorithm and particle swarm optimization algorithm in terms of iteration times and average fitness value. In conclusion, the optimized TTCAN protocol improves the real-time performance, reliability, and bandwidth utilization of the communication network.
    Materialart: Online-Ressource
    ISSN: 1687-7268 , 1687-725X
    Sprache: Englisch
    Verlag: Hindawi Limited
    Publikationsdatum: 2022
    ZDB Id: 2397931-8
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz