Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: BioMed Research International, Hindawi Limited, Vol. 2022 ( 2022-3-23), p. 1-12
    Abstract: Biomedical named entity recognition (BioNER) from clinical texts is a fundamental task for clinical data analysis due to the availability of large volume of electronic medical record data, which are mostly in free text format, in real-world clinical settings. Clinical text data incorporates significant phenotypic medical entities (e.g., symptoms, diseases, and laboratory indexes), which could be used for profiling the clinical characteristics of patients in specific disease conditions (e.g., Coronavirus Disease 2019 (COVID-19)). However, general BioNER approaches mostly rely on coarse-grained annotations of phenotypic entities in benchmark text dataset. Owing to the numerous negation expressions of phenotypic entities (e.g., “no fever,” “no cough,” and “no hypertension”) in clinical texts, this could not feed the subsequent data analysis process with well-prepared structured clinical data. In this paper, we developed Human-machine Cooperative Phenotypic Spectrum Annotation System (http://www.tcmai.org/login, HCPSAS) and constructed a fine-grained Chinese clinical corpus. Thereafter, we proposed a phenotypic named entity recognizer: Phenonizer, which utilized BERT to capture character-level global contextual representation, extracted local contextual features combined with bidirectional long short-term memory, and finally obtained the optimal label sequences through conditional random field. The results on COVID-19 dataset show that Phenonizer outperforms those methods based on Word2Vec with an F1-score of 0.896. By comparing character embeddings from different data, it is found that character embeddings trained by clinical corpora can improve F -score by 0.0103. In addition, we evaluated Phenonizer on two kinds of granular datasets and proved that fine-grained dataset can boost methods’ F1-score slightly by about 0.005. Furthermore, the fine-grained dataset enables methods to distinguish between negated symptoms and presented symptoms. Finally, we tested the generalization performance of Phenonizer, achieving a superior F1-score of 0.8389. In summary, together with fine-grained annotated benchmark dataset, Phenonizer proposes a feasible approach to effectively extract symptom information from Chinese clinical texts with acceptable performance.
    Type of Medium: Online Resource
    ISSN: 2314-6141 , 2314-6133
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2698540-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages