Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. 1026-1026
    Abstract: The receptor tyrosine kinase Tie2 is predominantly expressed in the endothelium but has also been identified on primitive hematopoietic stem cells, monocyte and macrophage subclasses, as well as on glioma or hematological tumor cells. Based on its expression in many patient-derived leukemic blasts inhibition of the Tie2 pathway may provide an attractive opportunity for therapeutic intervention in leukemias. In this study we report the pharmacological profile of a novel, highly potent and orally available Tie2 inhibitor (BAY-Tie2). The discovery and design process leading to BAY-Tie2 was performed with the goal of sparing other angiogenic RTKs, such as VEGFRs, FGFRs or PDGFRs. BAY-Tie2 is based on a novel imidazopyrazole core, combined with a SF5-substituted phenyl ring that fills the deep DFG-out pocket. BAY-Tie2 binds to Tie2 with a Kd value of 1.6 nM and is selective against VEGFR2 (Kd of 1600 nM), FGFR1 ( & lt;30% inhibition at 1 µM), FGFR2/3/4 ( & lt;10% inhibition at 1 µM) and PDGFRα/β ( & lt;30% inhibition at 100 nM). BAY-Tie2 potently inhibits Tie2 autophosphorylation in recombinant CHO-Tie2 and primary human umbilical vein endothelial cells (HUVEC) with IC50 values of 0.7 and 1.3 nM. Consistently, BAY-Tie2 was shown to inhibit Tie2 phosphorylation in vivo by analyzing angiopoietin-1 induced Tie2 phosphorylation status in extracts of murine lungs from BAY-Tie2-treated mice. In subcutaneous xenograft models of highly angiogenic tumors, BAY-Tie2 reduced tumor growth and showed evidence for potential combination benefit with anti-VEGF therapy. In order to explore the potential of a Tie2 inhibitor beyond affecting angiogenesis, we established disseminated leukemia models, using Tie2-expressing cell lines, such as the CML cell lines MEG-01 and EM-2. Both cell lines engrafted predominantly in bone marrow and spleen. Treatment started 3 days after i.v. cell implantation with either BAY-Tie2 or cytarabine and was well tolerated. Efficacy was monitored by a) inhibition of disease progression, b) weekly fluorescence-based in vivo imaging (IVI) using an Alexa750-labeled anti-human CD33 antibody, and c) q-RT-PCR specific for BCR-ABL and hCD45 in murine peripheral blood. BAY-Tie2 inhibited disease progression comparable to cytarabine. Tumor load measured by IVI was reduced in BAY-Tie2 treated groups by 45% in the MEG-01 and by 65% in the EM-2 model compared with the untreated control, very similar to the cytotoxic treatment with cytarabine. Quantitative RT-PCR on peripheral blood revealed that BAY-Tie2 and cytarabine delayed the appearance of circulating tumor cells in both CML models. These data demonstrate that BAY-Tie2 is an orally active Tie2 inhibitor that may have therapeutic benefit not only in angiogenic tumors but also in hematological, Tie2-expressing malignancies. Citation Format: Sylvia Gruenewald, Julia Schueler, Michael Haerter, Frank Suessmeier, Kerstin Klingner, Ulf Boemer, Stefan Kaulfuss, Alexander Walter, Mario Lobell, Ingo V. Hartung, Bernd Buchmann, Dieter Heldmann, Holger Hess-Stumpp, Karl Ziegelbauer. Novel Tie2 inhibitor with in vivo efficacy in disseminated hematological tumor models in mice. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 1026. doi:10.1158/1538-7445.AM2014-1026
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages