Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2014
    In:  Cancer Research Vol. 74, No. 19_Supplement ( 2014-10-01), p. 4035-4035
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. 4035-4035
    Abstract: Cancers evolve a subpopulation of tumor cells that metabolically rely on glycolysis uncoupled from oxidative phosphorylation irrespectively of oxygen availability (aerobic glycolysis). Given that most metastases are abnormally avid for glucose (which is the rationale for their clinical detection using FDG-PET) and because clinical data show a positive correlation between lactate production and tumor metastasis, we reasoned that cells performing aerobic glycolysis could constitute a population of metastatic progenitor cells that would remain glycolytic in the blood stream. We found a different metabolic phenotype, though. Indeed, using serial rounds of in vitro selection of highly invasive tumor cells (starting from wild-type SiHa human cervix adenocarcinoma cells) and in vivo selection of supermetastatic tumor cells (starting from B16-F10 mouse melanoma cells), we identified a mitochondrial switch corresponding to an overload of the TCA cycle with preserved mitochondrial functions (including ATP production) but increased mitochondrial superoxide production. The switch provided a metastatic advantage which was phenocopied by moderate OXPHOS inhibition associated with mild mitochondrial superoxide increase. Thus, two different events, OXPHOS overload or moderate OXPHOS inhibition, promote superoxide-dependent tumor cell migration, invasion, clonogenicity, and metastasis; demonstrating the central role of mitochondrial superoxide generation in the pathogenesis of metastasis. Consequently, we report that mitochondria-specific superoxide scavenging (using mitoTEMPO or mitoQ) inhibits metastatic dissemination from primary mouse and human tumors, which opens a new avenue for the therapeutic prevention of tumor metastasis. Citation Format: Paolo E. Porporato, Valéry L. Payen, Jhudit Pérez-Escuredo, Pierre Danhier, Olivier Feron, Bernard Gallez, Pierre Sonveaux. A mitochondrial switch promotes tumor metastasis. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 4035. doi:10.1158/1538-7445.AM2014-4035
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages