Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2017
    In:  Cancer Research Vol. 77, No. 4_Supplement ( 2017-02-15), p. S1-01-S1-01
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 4_Supplement ( 2017-02-15), p. S1-01-S1-01
    Abstract: Background: While great strides have been made in the treatment of estrogen receptor-positive (ER+) metastatic breast cancer (MBC), therapeutic resistance invariably occurs. A better understanding of the underlying resistance mechanisms is critical to enable durable control of this disease. Methods: We performed whole exome sequencing (WES) and transcriptome sequencing (RNA-seq) on metastatic tumor biopsies from 88 patients with ER+ MBC who had developed resistance to one or more ER-directed therapies. For 27 of these patients, we sequenced the treatment-naïve primary tumors for comparison to the resistant specimens. Tumors were analyzed for point mutations, insertions/deletions, copy number alterations, translocations, and gene expression. Detailed clinicopathologic data was collected for each patient and linked to the genomic information. Results: WES of all metastatic samples demonstrated several recurrently altered genes whose incidence differed significantly from primary, treatment-naïve ER+ breast cancers sequenced in the TCGA study (TCGA). These include ESR1 mutations (n=17, 19.3%; 32.86 fold enrichment, q.value & lt;7.5e-12), CCND1 amplification (n=52, 59.1%; 2.3 fold enrichment, q.value & lt;0.0073), and MAP2K4 biallelic inactivation (n=14, 15.9%; 3.04 fold enrichment, q.value & lt; 0.054). Comparing to matched primary samples from the same patient, many alterations were found to be acquired in several cases, including for ESR1, ERBB2, PIK3CA, PTEN, RB1, AKT1, and others. Initial analysis of RNA-seq data from metastatic samples (n=59) allowed classification of individual resistance mechanisms into broader resistance modes based on the observed transcriptional state. Conclusions: We present a genomic landscape of resistant ER+ MBC using WES and RNA-seq. Multiple genes were recurrently altered in these tumors at significantly higher rates than in ER+ primary breast cancer. When compared with matched primary tumors from the same patient, alterations in these and other genes were often found to be acquired after treatment, suggesting a role in resistance to ER-directed therapies and/or metastasis. Potential resistance mechanisms appear to fall into several categories; integrating RNA-seq data may enhance the ability to identify these categories even when genomic alterations are not identified. Multiple clinically relevant genomic and molecular alterations are identified in metastatic biopsies– with implications for choice of next therapy, clinical trial eligibility, and novel drug targets. Citation Format: Cohen O, Kim D, Oh C, Waks A, Oliver N, Helvie K, Marini L, Rotem A, Lloyd M, Stover D, Adalsteinsson V, Freeman S, Ha G, Cibulskis C, Anderka K, Tamayo P, Johannessen C, Krop I, Garraway L, Winer E, Lin N, Wagle N. Whole exome and transcriptome sequencing of resistant ER+ metastatic breast cancer [abstract]. In: Proceedings of the 2016 San Anto nio Breast Cancer Symposium; 2016 Dec 6-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2017;77(4 Suppl):Abstract nr S1-01.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages