In:
Cancer Discovery, American Association for Cancer Research (AACR), Vol. 9, No. 4 ( 2019-04-01), p. 500-509
Abstract:
Current regimens for the detection and surveillance of bladder cancer are invasive and have suboptimal sensitivity. Here, we present a novel high-throughput sequencing (HTS) method for detection of urine tumor DNA (utDNA) called utDNA CAPP-Seq (uCAPP-Seq) and apply it to 67 healthy adults and 118 patients with early-stage bladder cancer who had urine collected either prior to treatment or during surveillance. Using this targeted sequencing approach, we detected a median of 6 mutations per patient with bladder cancer and observed surprisingly frequent mutations of the PLEKHS1 promoter (46%), suggesting these mutations represent a useful biomarker for detection of bladder cancer. We detected utDNA pretreatment in 93% of cases using a tumor mutation–informed approach and in 84% when blinded to tumor mutation status, with 96% to 100% specificity. In the surveillance setting, we detected utDNA in 91% of patients who ultimately recurred, with utDNA detection preceding clinical progression in 92% of cases. uCAPP-Seq outperformed a commonly used ancillary test (UroVysion, P = 0.02) and cytology and cystoscopy combined (P ≤ 0.006), detecting 100% of bladder cancer cases detected by cytology and 82% that cytology missed. Our results indicate that uCAPP-Seq is a promising approach for early detection and surveillance of bladder cancer. Significance: This study shows that utDNA can be detected using HTS with high sensitivity and specificity in patients with early-stage bladder cancer and during post-treatment surveillance, significantly outperforming standard diagnostic modalities and facilitating noninvasive detection, genotyping, and monitoring. This article is highlighted in the In This Issue feature, p. 453
Type of Medium:
Online Resource
ISSN:
2159-8274
,
2159-8290
DOI:
10.1158/2159-8290.CD-18-0825
Language:
English
Publisher:
American Association for Cancer Research (AACR)
Publication Date:
2019
detail.hit.zdb_id:
2607892-2