Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Circulation: Cardiovascular Genetics, Ovid Technologies (Wolters Kluwer Health), Vol. 7, No. 4 ( 2014-08), p. 491-504
    Abstract: Low levels of high-density lipoprotein (HDL) cholesterol constitutes a major risk factor for atherosclerosis. Recent studies from our group reported a genetic association between the WW domain-containing oxidoreductase ( WWOX ) gene and HDL cholesterol levels. Here, through next-generation resequencing, in vivo functional studies and gene microarray analyses, we investigated the role of WWOX in HDL and lipid metabolism. Methods and Results— Using next-generation resequencing of the WWOX region, we first identified 8 variants significantly associated and perfectly segregating with the low-HDL trait in 2 multigenerational French Canadian dyslipidemic families. To understand in vivo functions of WWOX, we used liver-specific Wwox hep−/− and total Wwox −/− mice models, where we found decreased ApoA-I and Abca1 levels in hepatic tissues. Analyses of lipoprotein profiles in Wwox −/− , but not Wwox hep−/− littermates, also showed marked reductions in serum HDL cholesterol concentrations, concordant with the low-HDL findings observed in families. We next obtained evidence of a sex-specific effect in female Wwox hep−/− mice, where microarray analyses revealed an increase in plasma triglycerides and altered lipid metabolic pathways. We further identified a significant reduction in ApoA-I and Lpl and an upregulation in Fas , Angptl4 , and Lipg , suggesting that the effects of Wwox involve multiple pathways, including cholesterol homeostasis, ApoA-I/ABCA1 pathway, and fatty acid biosynthesis/triglyceride metabolism. Conclusions— Our data indicate that WWOX disruption alters HDL and lipoprotein metabolism through several mechanisms and may account for the low-HDL phenotype observed in families expressing the WWOX variants. These findings thus describe a novel gene involved in cellular lipid homeostasis, which effects may impact atherosclerotic disease development.
    Type of Medium: Online Resource
    ISSN: 1942-325X , 1942-3268
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2014
    detail.hit.zdb_id: 2927603-2
    detail.hit.zdb_id: 2457085-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages