Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 121, No. 6 ( 2010-02-16), p. 775-783
    Abstract: Background— Angiogenesis is a natural mechanism to restore perfusion to the ischemic myocardium after acute myocardial infarction (MI). Therapeutic angiogenesis is being explored as a novel treatment for MI patients; however, sensitive, noninvasive in vivo measures of therapeutic efficacy are lacking and need to be developed. Here, a molecular magnetic resonance imaging method is presented to noninvasively image angiogenic activity in vivo in a murine model of MI with cyclic Asn-Gly-Arg (cNGR)–labeled paramagnetic quantum dots (pQDs). The tripeptide cNGR homes specifically to CD13, an aminopeptidase that is strongly upregulated during myocardial angiogenesis. Methods and Results— Acute MI was induced in male Swiss mice via permanent ligation of the left anterior descending coronary artery. Molecular magnetic resonance imaging was performed 7 days after surgery and up to 2 hours after intravenous contrast agent administration. Injection of cNGR-pQDs resulted in a strong negative contrast that was located mainly in the infarcted myocardium. This negative contrast was significantly less in MI mice injected with unlabeled pQDs and in sham-operated mice injected with cNGR-pQDs. Validation with ex vivo 2-photon laser scanning microscopy revealed a strong colocalization of cNGR-pQDs with vascular endothelial cells, whereas unlabeled pQDs were mostly extravasated and diffused through the tissue. Additionally, 2-photon laser scanning microscopy demonstrated significant microvascular remodeling in the infarct/border zones compared with remote myocardium. Conclusions— cNGR-pQDs allow selective, noninvasive detection of angiogenic activity in the infarcted heart with the use of in vivo molecular magnetic resonance imaging and ex vivo 2-photon laser scanning microscopy.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2010
    detail.hit.zdb_id: 1466401-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages