In:
Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 134, No. 7 ( 2016-08-16), p. 534-546
Kurzfassung:
L-type calcium channels (LTCCs) play important roles in regulating cardiomyocyte physiology, which is governed by appropriate LTCC trafficking to and density at the cell surface. Factors influencing the expression, half-life, subcellular trafficking, and gating of LTCCs are therefore critically involved in conditions of cardiac physiology and disease. Methods: Yeast 2-hybrid screenings, biochemical and molecular evaluations, protein interaction assays, fluorescence microscopy, structural molecular modeling, and functional studies were used to investigate the molecular mechanisms through which the LTCC Ca v β2 chaperone regulates channel density at the plasma membrane. Results: On the basis of our previous results, we found a direct linear correlation between the total amount of the LTCC pore-forming Ca v α1.2 and the Akt-dependent phosphorylation status of Ca v β2 both in a mouse model of diabetic cardiac disease and in 6 diabetic and 7 nondiabetic cardiomyopathy patients with aortic stenosis undergoing aortic valve replacement. Mechanistically, we demonstrate that a conformational change in Ca v β2 triggered by Akt phosphorylation increases LTCC density at the cardiac plasma membrane, and thus the inward calcium current, through a complex pathway involving reduction of Ca v α1.2 retrograde trafficking and protein degradation through the prevention of dynamin-mediated LTCC endocytosis; promotion of Ca v α1.2 anterograde trafficking by blocking Kir/Gem-dependent sequestration of Ca v β2, thus facilitating the chaperoning of Ca v α1.2; and promotion of Ca v α1.2 transcription by the prevention of Kir/Gem-mediated shuttling of Ca v β2 to the nucleus, where it limits the transcription of Ca v α1.2 through recruitment of the heterochromatin protein 1γ epigenetic repressor to the Cacna1c promoter. On the basis of this mechanism, we developed a novel mimetic peptide that, through targeting of Ca v β2, corrects LTCC life-cycle alterations, facilitating the proper function of cardiac cells. Delivery of mimetic peptide into a mouse model of diabetic cardiac disease associated with LTCC abnormalities restored impaired calcium balance and recovered cardiac function. Conclusions: We have uncovered novel mechanisms modulating LTCC trafficking and life cycle and provide proof of concept for the use of Ca v β2 mimetic peptide as a novel therapeutic tool for the improvement of cardiac conditions correlated with alterations in LTCC levels and function.
Materialart:
Online-Ressource
ISSN:
0009-7322
,
1524-4539
DOI:
10.1161/CIRCULATIONAHA.116.021347
Sprache:
Englisch
Verlag:
Ovid Technologies (Wolters Kluwer Health)
Publikationsdatum:
2016
ZDB Id:
1466401-X