Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Hypertension, Ovid Technologies (Wolters Kluwer Health), Vol. 67, No. 5 ( 2016-05), p. 878-889
    Abstract: The detailed molecular mechanisms of the pleiotropic effects of statins remain to be fully elucidated. Here, we hypothesized that cardioprotective effects of statins are mediated by small GTP-binding protein GDP dissociation stimulator (SmgGDS). SmgGDS +/– and wild-type (WT) mice were treated with continuous infusion of angiotensin II (Ang II) for 2 weeks with and without oral treatment with atorvastatin or pravastatin. At 2 weeks, the extents of Ang II–induced cardiac hypertrophy and fibrosis were comparable between the 2 genotypes. However, statins significantly attenuated cardiomyocyte hypertrophy and fibrosis in WT mice, but not in SmgGDS +/– mice. In SmgGDS +/– cardiac fibroblasts (CFs), Rac1 expression, extracellular signal–regulated kinases 1/2 activity, Rho-kinase activity, and inflammatory cytokines secretion in response to Ang II were significantly increased when compared with WT CFs. Atorvastatin significantly reduced Rac1 expression and oxidative stress in WT CFs, but not in SmgGDS +/– CFs. Furthermore, Bio-plex analysis revealed significant upregulations of inflammatory cytokines/chemokines and growth factors in SmgGDS +/– CFs when compared with WT CFs. Importantly, conditioned medium from SmgGDS +/– CFs increased B-type natriuretic peptide expression in rat cardiomyocytes to a greater extent than that from WT CFs. Furthermore, atorvastatin significantly increased SmgGDS secretion from mouse CFs. Finally, treatment with recombinant SmgGDS significantly reduced Rac1 expression in SmgGDS +/– CFs. These results indicate that both intracellular and extracellular SmgGDS play crucial roles in the inhibitory effects of statins on cardiac hypertrophy and fibrosis, partly through inhibition of Rac1, Rho kinase, and extracellular signal–regulated kinase 1/2 pathways, demonstrating the novel mechanism of the pleiotropic effects of statins.
    Type of Medium: Online Resource
    ISSN: 0194-911X , 1524-4563
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2016
    detail.hit.zdb_id: 2094210-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages