Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of the American Heart Association, Ovid Technologies (Wolters Kluwer Health), Vol. 10, No. 13 ( 2021-07-06)
    Abstract: This cross‐sectional study evaluated associations between structural and functional measures of left ventricular diastolic function and cardiorespiratory fitness (CRF) in a well‐characterized population‐based cohort stratified according to glucose metabolism status. Methods and Results Six hundred seventy‐two participants from The Maastricht Study (mean±SD age, 61±9 years; 17.4% prediabetes and 25.4% type 2 diabetes mellitus) underwent both echocardiography to determine left atrial volume index, left ventricular mass index, maximum tricuspid flow regurgitation, average e′ and E/e′ ratio; and submaximal cycle ergometer test to determine CRF as maximum power output per kilogram body mass. Associations were examined with linear regression adjusted for cardiovascular risk and lifestyle factors, and interaction terms. After adjustment, in normal glucose metabolism but not (pre)diabetes, higher left atrial volume index (per 1 mL/m 2 ), left ventricular mass index (per 1 g/m 2.7 ), maximum tricuspid regurgitation flow (per 1 m/s) were associated with higher CRF (maximum power output per kilogram body mass; β in normal glucose metabolism 0.015 [0.008–0.023], P interaction (pre)diabetes 〈 0.10; 0.007 [−0.001 to 0.015], P interaction type 2 diabetes mellitus 〈 0.10; 0.129 [0.011–0.246], P interaction 〉 0.10; for left atrial volume index, left ventricular mass index, maximum tricuspid regurgitation flow, respectively). Furthermore, after adjustment, in all individuals, higher average E/e′ ratio (per unit), but not average e′, was associated with lower CRF (normal glucose metabolism −0.044 [−0.071 to −0.016]), P interaction 〉 0.10). Conclusions In this population‐based study, structural and functional measures of left ventricular diastolic function were independently differentially associated with CRF over the strata of glucose metabolism status. This suggests that deteriorating left ventricular diastolic function, although of small effect, may contribute to the pathophysiological process of impaired CRF in the general population. Moreover, the differential effects in these structural measures may be the consequence of cardiac structural adaptation to effectively increase CRF in normal glucose metabolism, which is absent in (pre)diabetes.
    Type of Medium: Online Resource
    ISSN: 2047-9980
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2021
    detail.hit.zdb_id: 2653953-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages