Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Stroke, Ovid Technologies (Wolters Kluwer Health), Vol. 49, No. 8 ( 2018-08), p. 1812-1819
    Abstract: White matter hyperintensities (WMH) on brain magnetic resonance imaging are typical signs of cerebral small vessel disease and may indicate various preclinical, age-related neurological disorders, such as stroke. Though WMH are highly heritable, known common variants explain a small proportion of the WMH variance. The contribution of low-frequency/rare coding variants to WMH burden has not been explored. Methods— In the discovery sample we recruited 20 719 stroke/dementia-free adults from 13 population-based cohort studies within the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, among which 17 790 were of European ancestry and 2929 of African ancestry. We genotyped these participants at ≈250 000 mostly exonic variants with Illumina HumanExome BeadChip arrays. We performed ethnicity-specific linear regression on rank-normalized WMH in each study separately, which were then combined in meta-analyses to test for association with single variants and genes aggregating the effects of putatively functional low-frequency/rare variants. We then sought replication of the top findings in 1192 adults (European ancestry) with whole exome/genome sequencing data from 2 independent studies. Results— At 17q25, we confirmed the association of multiple common variants in TRIM65 , FBF1 , and ACOX1 ( P 〈 6×10 −7 ). We also identified a novel association with 2 low-frequency nonsynonymous variants in MRPL38 (lead, rs34136221; P EA =4.5×10 −8 ) partially independent of known common signal ( P EA(conditional) =1.4×10 −3 ). We further identified a locus at 2q33 containing common variants in NBEAL1 , CARF , and WDR12 (lead, rs2351524; P all =1.9×10 −10 ). Although our novel findings were not replicated because of limited power and possible differences in study design, meta-analysis of the discovery and replication samples yielded stronger association for the 2 low-frequency MRPL38 variants ( P rs34136221 =2.8×10 −8 ). Conclusions— Both common and low-frequency/rare functional variants influence WMH. Larger replication and experimental follow-up are essential to confirm our findings and uncover the biological causal mechanisms of age-related WMH.
    Type of Medium: Online Resource
    ISSN: 0039-2499 , 1524-4628
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2018
    detail.hit.zdb_id: 1467823-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages