Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2007
    In:  Circulation Vol. 116, No. suppl_16 ( 2007-10-16)
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 116, No. suppl_16 ( 2007-10-16)
    Abstract: Sustained cardiac hypertrophy may lead to heart failure and sudden death. While significant progress has been made in elucidating the underlying molecular mechanisms, it is believed that several molecules that modulate cardiomyocyte growth remain elusive. To identify novel candidates involved in hypertrophic signalling, we conducted a genome-wide screening experiment by subjecting neonatal rat cardiomyocytes (NRCM) to either biomechanical stretch or phenylephrine (PE) stimulation followed by microarray analyses. Among several other molecules (stretch: n=164; PE: n=238), the new LIM protein Dyxin/Lmcd1 was significantly upregulated both by stretch (5.6fold, p 〈 0.001) and PE (2.5 fold, p 〈 0.01). Moreover, Dyxin was markedly induced in hypertrophic hearts of transgenic mice overexpressing the phosphatase calcineurin (3.8fold on mRNA- and 2.9fold on protein level (both p 〈 0.01)). To dissect the putative function of this novel molecule, we adenovirally overexpressed Dyxin in NRCM, which led to marked cellular hypertrophy (1.5fold increase in cell surface area, p 〈 0.001) and induction of ANF (3.8fold, p 〈 0.05). In addition, the calcineurin-responsive gene MCIP1.4 was found upregulated (3.2fold, p 〈 0.001), suggesting that Dyxin activates the calcineurin pathway. In order to test whether Dyxin is also required for cardiomyocyte hypertrophy, we stimulated NRCVM with either PE or stretch and utilized adenovirus-encoded microRNAs to knock down Dyxin (−75% on protein, −85% on mRNA level). While both PE and stretch induced significant hypertrophy (+41% and +48%, p 〈 0.001), the inhibition of Dyxin expression completely blunted the hypertrophic response to both stimuli (p 〈 0.001). Consistently, induction of the “hypertrophic gene program” (including ANF, BNP, and alpha-skeletal actin) was abrogated. Likewise, PE-mediated upregulation of MCIP1.4 expression (7.3fold; p 〈 0.001), was entirely prevented by the knockdown of Dyxin (0.8fold, p=n.s.). We show here that Dyxin, which has not been implicated in hypertrophy before, is significantly upregulated in cardiac hypertrophy. Moreover, it is both necessary and sufficient for cardiomyocyte hypertrophy, and this effect is mediated, at least in part by modulation of calcineurin signalling.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2007
    detail.hit.zdb_id: 1466401-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages