In:
Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 115, No. suppl_1 ( 2014-07-18)
Abstract:
Introduction: Targeting microRNAs differentially regulated in settings of stress and protection could represent a new approach for the treatment of heart failure. miR-652 expression increased in hearts of a cardiac stress mouse model and was downregulated in a model of cardiac protection. Aim: To assess the therapeutic potential of silencing miR-652 in a mouse model with established pathological hypertrophy and cardiac dysfunction due to pressure overload. Methods: Mice were subjected to a sham operation (n=10) or transverse aortic constriction (TAC, n=14) for 4 weeks to induce hypertrophy and cardiac dysfunction. Mice were subcutaneously administered a locked nucleic acid (LNA)-antimiR-652 or LNA-control. Cardiac function was assessed by echocardiography before and 8 weeks post treatment, followed by molecular and histological analyses. Results: Expression of miR-652 increased in hearts subjected to pressure overload compared to sham operated mice (2.9 fold, n=3-5, P 〈 0.05), but was silenced in hearts of mice administered LNA-antimiR-652 (95% decrease, n=3-7, P 〈 0.05). In mice subjected to pressure overload, inhibition of miR-652 improved cardiac function (29±1% at 4 weeks post TAC compared to 35±1% post treatment, n=7, P 〈 0.001) and attenuated cardiac hypertrophy. Functional and morphologic improvements in hearts of treated mice were associated with reduced cardiac fibrosis, apoptosis, cardiomyocyte size; decreased B-type natriuretic peptide gene expression; and preserved angiogenesis (all P 〈 0.05, n=4-7/group). Mechanistically, we identified Jagged1, a Notch1 ligand, as a direct target of miR-652 by luciferase assay. Jagged1 and Notch1 mRNA were upregulated in hearts of TAC treated mice (1.2-1.7 fold, n=7, P 〈 0.05). Importantly, chronic knockdown of miR-652 was not associated with any notable toxicity in other tissues. Conclusion: Therapeutic silencing of miR-652 protects the heart against pathological cardiac remodeling and improves heart function via mechanisms that are associated with preserved angiogenesis, decreased fibrosis and upregulation of a miR-652 target, Jagged1. These studies provide the first evidence that targeted inhibition of miR-652 could represent an attractive approach for the treatment of heart failure.
Type of Medium:
Online Resource
ISSN:
0009-7330
,
1524-4571
DOI:
10.1161/res.115.suppl_1.50
Language:
English
Publisher:
Ovid Technologies (Wolters Kluwer Health)
Publication Date:
2014
detail.hit.zdb_id:
1467838-X