Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    American Scientific Publishers ; 2020
    In:  Journal of Medical Imaging and Health Informatics Vol. 10, No. 11 ( 2020-11-01), p. 2557-2563
    In: Journal of Medical Imaging and Health Informatics, American Scientific Publishers, Vol. 10, No. 11 ( 2020-11-01), p. 2557-2563
    Kurzfassung: Considering that the kidneys segmentation challenge for image processing because of the gray level from abdominal computer tomography (CT) scans is a great similarity of adjacent organs, partial volume effects and so on, a novel multi-feature sparse constraints strategy is proposed to diagnose the benign and malignant renal tumors, which can improve the accuracy and reliability of segmentation. The weighted sparse measure is defined by introducing weights in the l 1 -norm of vectors. The weight is inversely proportional to the similarity between data, therefore the weighted l 1 -norm penalty on the linear representation coefficients tends to force similar data be involved while dissimilar data uninvolved in the linear representation of a datum. The resulted representation can overcome the drawbacks of l 1 -norm penalty that the presentation coefficients are usually over sparse and not robust for highly correlated data. Experimental results and objective assessment indexes show that the proposed method can effectively segment CT images with good visual consistency. In addition, the dice coefficients of renal and renal tumors were 0.933 and 0.854, respectively. In addition, our method can also be used for the diagnosis of renal tumors, and has also achieved good performance.
    Materialart: Online-Ressource
    ISSN: 2156-7018
    Sprache: Englisch
    Verlag: American Scientific Publishers
    Publikationsdatum: 2020
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz