Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Scientific Publishers ; 2020
    In:  Journal of Nanoscience and Nanotechnology Vol. 20, No. 8 ( 2020-08-01), p. 4629-4633
    In: Journal of Nanoscience and Nanotechnology, American Scientific Publishers, Vol. 20, No. 8 ( 2020-08-01), p. 4629-4633
    Abstract: Immuno-assay is one of diagnostic methods that usually measures biomarkers associated with cancers. However, this method is complex and take a long time to analyze. To overcome these disadvantages, many immuno-sensing chips have been designed and developed. However, these devices still require an external pump or electrical source. In this study, our group fabricated a capillary microfluidic device using glass and adhesive polyethylene terephthalate (PET) film, which were designed by simply patterning and cutting to make the microfluidic capillary channels. Using capillary force alone, glass microfluidic chip can control the speed of fluid-flow and the flow sequence by adjusting the width of the channel and design. In addition, each flow can push out other flow without mixing. The glass-based capillary microfluidic chip (GCMC) can automatically perform immunoassay in regular order without external devices and it provide an electrochemical signal analysis in an average of 2 min. The concentration of the prostate-specific antigen (PSA), a biomarker of prostate cancer, was measured by cyclic voltammetry (CV). In conclusion, GCMC can detect between a range of 100 pg/ml to 1 μ g/ml of PSA and provide high selectivity to PSA.
    Type of Medium: Online Resource
    ISSN: 1533-4880
    Language: English
    Publisher: American Scientific Publishers
    Publication Date: 2020
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages