Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2008
    In:  Monthly Weather Review Vol. 136, No. 11 ( 2008-11-01), p. 4503-4516
    In: Monthly Weather Review, American Meteorological Society, Vol. 136, No. 11 ( 2008-11-01), p. 4503-4516
    Kurzfassung: In this paper, a new iterative algorithm for computing a steady-state Kalman gain is proposed. This algorithm utilizes two model forecasts with statistically independent random perturbations to determine the error covariance used to define a Kalman gain matrix for steady-state data assimilation. It is based on the assumption that the error process is weakly stationary and ergodic. The algorithm consists of an iterative procedure for improving the covariance estimate, which requires a fixed observation network. Two twin experiments using a simple wave model and an operational storm surge prediction model are performed to demonstrate the performance of the proposed algorithm. The experiments show that the results obtained by using the proposed algorithm converge to the ones produced by the classic Kalman filter algorithm. An additional experiment using the three-variable Lorenz model is also performed to demonstrate its potential applicability in unstable dynamical systems.
    Materialart: Online-Ressource
    ISSN: 1520-0493 , 0027-0644
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2008
    ZDB Id: 2033056-X
    ZDB Id: 202616-8
    SSG: 14
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz