Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of the Atmospheric Sciences Vol. 66, No. 9 ( 2009-09-01), p. 2812-2827
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 66, No. 9 ( 2009-09-01), p. 2812-2827
    Abstract: The response of tropical precipitation to extratropical thermal forcing is reexamined using an idealized moist atmospheric GCM that has no water vapor or cloud feedbacks, simplifying the analysis while retaining the aquaplanet configuration coupled to a slab ocean from the authors’ previous study. As in earlier studies, tropical precipitation in response to high-latitude forcing is skewed toward the warmed hemisphere. Comparisons with a comprehensive GCM in an identical aquaplanet, mixed-layer framework reveal that the tropical responses tend to be much larger in the comprehensive GCM as a result of positive cloud and water vapor feedbacks that amplify the imposed extratropical thermal forcing. The magnitude of the tropical precipitation response in the idealized model is sensitive to convection scheme parameters. This sensitivity as well as the tropical precipitation response can be understood from a simple theory with two ingredients: the changes in poleward energy fluxes are predicted using a one-dimensional energy balance model and a measure of the “total gross moist stability” [Δm, which is defined as the total (mean plus eddy) atmospheric energy transport per unit mass transport] of the model tropics converts the energy flux change into a mass flux and a moisture flux change. The idealized model produces a low level of compensation of about 25% between the imposed oceanic flux and the resulting response in the atmospheric energy transport in the tropics regardless of the convection scheme parameter. Because Geophysical Fluid Dynamics Laboratory Atmospheric Model 2 (AM2) with prescribed clouds and water vapor exhibits a similarly low level of compensation, it is argued that roughly 25% of the compensation is dynamically controlled through eddy energy fluxes. The sensitivity of the tropical response to the convection scheme in the idealized model results from different values of Δm: smaller Δm leads to larger tropical precipitation changes for the same response in the energy transport.
    Type of Medium: Online Resource
    ISSN: 1520-0469 , 0022-4928
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages