Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2004
    In:  Journal of the Atmospheric Sciences Vol. 61, No. 23 ( 2004-12-01), p. 2928-2935
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 61, No. 23 ( 2004-12-01), p. 2928-2935
    Abstract: Abrupt transitions to strongly superrotating states have been found in some idealized models of the troposphere. These transitions are thought to be caused by feedbacks between the eddy momentum flux convergence in low latitudes and the strength of the equatorial flow. The behavior of an axisymmetric shallow-water model with an applied tropical torque is studied here to determine if an abrupt transition can be realized without eddy feedbacks. The upper-tropospheric layer is relaxed to a radiative equilibrium thickness, exchanging mass and thus momentum with the nonmoving lower layer. For low values of the applied torque, the circulation is earthlike; however, for larger values, an abrupt transition to a strongly superrotating state can occur. In some cases, the system remains superrotating as the torque is subsequently decreased. A simple analytical model is used to better understand the system. The bifurcation is caused by a feedback between the applied torque and the strength of the Hadley cell. As the torque increases, the strength of the cell decreases, reducing the damping caused by momentum transfer from the lower layer.
    Type of Medium: Online Resource
    ISSN: 1520-0469 , 0022-4928
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2004
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages