Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2012
    In:  Journal of Climate Vol. 25, No. 17 ( 2012-09-01), p. 5777-5790
    In: Journal of Climate, American Meteorological Society, Vol. 25, No. 17 ( 2012-09-01), p. 5777-5790
    Abstract: Using lagged composites and projections with the thermodynamic energy equation, in this study the mechanisms that drive the boreal winter Arctic surface air temperature (SAT) change associated with the Madden–Julian oscillation (MJO) are investigated. The Wheeler and Hendon MJO index, which divides the MJO into 8 phases, where phase 1 (phase 5) corresponds to reduced (enhanced) convection over the Maritime Continent and western Pacific Ocean, is used. It is shown that the more zonally localized (uniform) tropical convective heating associated with MJO phase 5 (phase 1) leads to enhanced (reduced) excitation of poleward-propagating Rossby waves, which contribute to Arctic warming (cooling). Adiabatic warming/cooling, eddy heat flux, and the subsequent change in downward infrared radiation (IR) flux are found to be important for the Arctic SAT change. The adiabatic warming/cooling initiates the Arctic SAT change, however, subsequent eddy heat flux makes a greater contribution. The resulting SAT change is further amplified by alteration in downward IR. It is shown that changes in surface sensible and latent heat fluxes oppose the contribution by the above processes.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2012
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages